Title
Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy
Date Issued
01 June 2017
Access level
open access
Resource Type
journal article
Author(s)
Cadavez V.
Pereda J.
Teixeira J.A.
Liland K.H.
Publisher(s)
Academic Press
Abstract
The aim of this study was to develop robust chemometric models for the routine determination of dietary constituents of quinoa (Chenopodium quinoa Willd.) using Near-Infrared Transmission (NIT) spectroscopy. Spectra of quinoa grains of 77 cultivars were acquired while dietary constituents were determined by reference methods. Spectra were subjected to multiplicative scatter correction (MSC) or extended multiplicative signal correction (EMSC), and were (or not) treated by Savitzky-Golay (SG) filters. Latent variables were extracted by partial least squares regression (PLSR) or canonical powered partial least squares (CPPLS) algorithms, and the accuracy and predictability of all modelling strategies were compared. Smoothing the spectra improved the accuracy of the models for fat (root mean square error of cross-validation, RMSECV: 0.319–0.327%), ashes (RMSECV: 0.224–0.230%), and particularly for protein (RMSECV: 0.518–0.564%) and carbohydrates (RMSECV: 0.542–0.559%), while enhancing the prediction performance, particularly, for fat (root mean square error of prediction, RMSEP: 0.248–0.335%) and ashes (RMSEP: 0.137–0.191%). Although the highest predictability was achieved for ashes (SG-filtered EMSC/PLSR: bootstrapped 90% confidence interval for RMSEP: [0.376–0.512]) and carbohydrates (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.651–0.901]), precision was acceptable for protein (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.650–0.852]), fat (SG-filtered EMSC/CPPLS: 90% CI RMSEP: [0.478–0.654]) and moisture (non-filtered EMSC/PLSR: 90% CI RMSEP: [0.658–0.833]).
Start page
126
End page
134
Volume
79
Language
English
OCDE Knowledge area
Biotecnología agrícola, Biotecnología alimentaria
Subjects
Scopus EID
2-s2.0-85009815251
Source
LWT
Resource of which it is part
LWT
ISSN of the container
00236438
Sources of information:
Directorio de Producción Científica
Scopus