Title
Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes
Date Issued
15 October 2006
Access level
open access
Resource Type
journal article
Author(s)
Celleri R.
Willems P.
Bièvre B.
Wyseure G.
Universidad de Cuenca
Publisher(s)
Elsevier
Abstract
Particularly in mountain environments, rainfall can be extremely variable in space and time. For many hydrological applications such as modelling, extrapolation of point rainfall measurements is necessary. Decisions about the techniques used for extrapolation, as well as the adequacy of the conclusions drawn from the final results, depend heavily on the magnitude and the nature of the uncertainty involved. In this paper, we examine rainfall data from 14 rain gauges in the western mountain range of the Ecuadorian Andes. The rain gauges are located in the western part of the rio Paute basin. This area, between 3500 and 4100 m asl, consists of mountainous grasslands, locally called páramo, and acts as major water source for the inter-Andean valley. Spatial and temporal rainfall patterns were studied. A clear intraday pattern can be distinguished. Seasonal variation, on the other hand, is low, with a difference of about 100 mm between the dryest and the wettest month on an average of about 100 mm month-1, and only 20% dry days throughout the year. Rain gauges at a mutual distance of less than 4000 m are strongly correlated, with a Pearson correlation coefficient higher than 0.8. However, even within this perimeter, spatial variability in average rainfall is very high. Significant correlations were found between average daily rainfall and geographical location, as well as the topographical parameters slope, aspect, topography. Spatial interpolation with thiessen gives good results. Kriging gives better results than thiessen, and the accuracy of both methods improves when external trends are incorporated. © 2006 Elsevier B.V. All rights reserved.
Start page
413
End page
421
Volume
329
Issue
April 3
Language
English
OCDE Knowledge area
Geociencias, Multidisciplinar Meteorología y ciencias atmosféricas
Scopus EID
2-s2.0-33748937193
Source
Journal of Hydrology
ISSN of the container
00221694
Sources of information: Directorio de Producción Científica Scopus