Title
Seismic and aseismic slip on the Central Peru megathrust
Date Issued
06 May 2010
Access level
metadata only access
Resource Type
journal article
Author(s)
Perfettini H.
Avouac J.P.
Kositsky A.
Nocquet J.M.
Bondoux F.
Chlieh M.
Sladen A.
Audin L.
Farber D.L.
Soler P.
Publisher(s)
Springer Nature
Abstract
Slip on a subduction megathrust can be seismic or aseismic, with the two modes of slip complementing each other in time and space to accommodate the long-term plate motions. Although slip is almost purely aseismic at depths greater than about 40 km, heterogeneous surface strain suggests that both modes of slip occur at shallower depths, with aseismic slip resulting from steady or transient creep in the interseismic and postseismic periods. Thus, active faults seem to comprise areas that slip mostly during earthquakes, and areas that mostly slip aseismically. The size, location and frequency of earthquakes that a megathrust can generate thus depend on where and when aseismic creep is taking place, and what fraction of the long-term slip rate it accounts for. Here we address this issue by focusing on the central Peru megathrust. We show that the Pisco earthquake, with moment magnitude Mw = 8.0, ruptured two asperities within a patch that had remained locked in the interseismic period, and triggered aseismic frictional afterslip on two adjacent patches. The most prominent patch of afterslip coincides with the subducting Nazca ridge, an area also characterized by low interseismic coupling, which seems to have repeatedly acted as a barrier to seismic rupture propagation in the past. The seismogenic portion of the megathrust thus appears to be composed of interfingering rate-weakening and rate-strengthening patches. The rate-strengthening patches contribute to a high proportion of aseismic slip, and determine the extent and frequency of large interplate earthquakes. Aseismic slip accounts for as much as 50-70% of the slip budget on the seismogenic portion of the megathrust in central Peru, and the return period of earthquakes with M w = 8.0 in the Pisco area is estimated to be 250 years. © 2010 Macmillan Publishers Limited. All rights reserved.
Start page
78
End page
81
Volume
465
Issue
7294
Language
English
OCDE Knowledge area
Geología
Geoquímica, Geofísica
Sensores remotos
Scopus EID
2-s2.0-77952033505
Source
Nature
ISSN of the container
00280836
Sponsor(s)
Acknowledgements We thank J. Freymueller and R. Burgmann for reviews that have helped improve this manuscript. We are grateful to A. Copley for help in editing the manuscript. This study has benefited from support from the Institute de Recherche pour le Développement, the Gordon and Betty Moore Foundation through the Tectonics Observatory, and the National Science Foundation through grant EAR-0838495.
Sources of information:
Directorio de Producción Científica
Scopus