Title
Body mass predicts isotope enrichment in herbivorous mammals
Date Issued
27 June 2018
Access level
open access
Resource Type
conference paper
Publisher(s)
Royal Society Publishing
Abstract
Carbon isotopic signatures recorded in vertebrate tissues derive from ingested food and thus reflect ecologies and ecosystems. For almost two decades, most carbon isotope-based ecological interpretations of extant and extinct herbivorous mammals have used a single diet–bioapatite enrichment value (14). Assuming this single value applies to all herbivorous mammals, from tiny monkeys to giant elephants, it overlooks potential effects of distinct physiological and metabolic processes on carbon fractionation. By analysing a never before assessed herbivorous group spanning a broad range of body masses—sloths—we discovered considerable variation in diet–bioapatite d13C enrichment among mammals. Statistical tests (ordinary least squares, quantile, robust regressions, Akaike information criterion model tests) document independence from phylogeny, and a previously unrecognized strong and significant correlation of d13C enrichment with body mass for all mammalian herbivores. A single-factor body mass model outperforms all other single-factor or more complex combinatorial models evaluated, including for physiological variables (metabolic rate and body temperature proxies), and indicates that body mass alone predicts d13C enrichment. These analyses, spanning more than 5 orders of magnitude of body sizes, yield a size-dependent prediction of isotopic enrichment across Mammalia and for distinct digestive physiologies, permitting reconstruction of foregut versus hindgut fermentation for fossils and refined mean annual palaeoprecipitation estimates based on d13C of mammalian bioapatite.
Volume
285
Issue
1881
Language
English
OCDE Knowledge area
Paleontología
Scopus EID
2-s2.0-85049091284
PubMed ID
ISSN of the container
09628452
Conference
Proceedings of the Royal Society B: Biological Sciences
Sponsor(s)
Analyses were carried out with funds from the Florida Museum of Natural History and the PCP-PIRE project (NSF PIRE 0966884). Additional funds from Columbia University GSAS and the American Museum of Natural History (Division of Paleontology Frick Fund and RGGS) covered some internal expenses during the writing stage of this project.
Sources of information: Directorio de Producción Científica Scopus