Title
Global existence and blowup for a coupled parabolic system with time-weighted sources on a general domain
Date Issued
01 April 2019
Access level
metadata only access
Resource Type
journal article
Author(s)
Universidad del Bío Bío
Federal University of Pernambuco
Publisher(s)
Birkhauser Verlag AG
Abstract
We consider the parabolic problem ut- Δ u= F(t, u) in Ω × (0 , T) with homogeneous Dirichlet boundary conditions. The nonlinear term is given by F(t,u)=(f1(t)u2p1,…,fm(t)u1pm),where u= (u1, … , um) , pi≥ 1 , and fi∈ C[ 0 , ∞) , for i= 1 , … , m. The set of initial data is {u= (u0 , 1, … , u,m) ∈ C(Ω) m; ui,≥ 0} , where Ω is an arbitrary domain (either bounded or unbounded) with smooth boundary. We determine conditions that guarantee either the global existence or the blowup in finite time of nonnegative solutions. These conditions are given in terms of the asymptotic behavior of ‖S(t)u0‖L∞(Ω), where (S(t)u0)t≥0 is the heat semigroup on C(Ω) m.
Volume
70
Issue
2
Language
English
OCDE Knowledge area
Matemáticas
Scopus EID
2-s2.0-85062604014
Source
Zeitschrift fur Angewandte Mathematik und Physik
ISSN of the container
00442275
Sources of information: Directorio de Producción Científica Scopus