Title
Development of a Prediction Model for COVID-19 Acute Respiratory Distress Syndrome in Patients With Rheumatic Diseases: Results From the Global Rheumatology Alliance Registry
Date Issued
01 January 2022
Access level
open access
Resource Type
journal article
Author(s)
Izadi Z.
Gianfrancesco M.A.
Aguirre A.
Strangfeld A.
Mateus E.F.
Hyrich K.L.
Gossec L.
Carmona L.
Lawson-Tovey S.
Kearsley-Fleet L.
Schaefer M.
Seet A.M.
Schmajuk G.
Jacobsohn L.
Katz P.
Rush S.
Al-Emadi S.
Sparks J.A.
Hsu T.Y.T.
Patel N.J.
Wise L.
Gilbert E.
Duarte-GarcĂ­a A.
Valenzuela-Almada M.O.
Ribeiro S.L.E.
de Oliveira Marinho A.
de Azevedo Valadares L.D.
Giuseppe D.D.
Hasseli R.
Richter J.G.
Pfeil A.
Schmeiser T.
Isnardi C.A.
Reyes Torres A.A.
Alle G.
Saurit V.
Zanetti A.
Carrara G.
Labreuche J.
Barnetche T.
Herasse M.
Plassart S.
Santos M.J.
Rodrigues A.M.
Robinson P.C.
Machado P.M.
Sirotich E.
Liew J.W.
Hausmann J.S.
Sufka P.
Grainger R.
Bhana S.
Costello W.
Wallace Z.S.
Yazdany J.
Publisher(s)
John Wiley and Sons Inc.
Abstract
Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.
Language
English
OCDE Knowledge area
ReumatologĂ­a
Scopus EID
2-s2.0-85134738149
Source
ACR Open Rheumatology
ISSN of the container
25785745
Sponsor(s)
We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.
Sources of information: Directorio de ProducciĂłn CientĂ­fica Scopus