Title
Tissue-derived mesenchymal stromal cells used as vehicles for anti-tumor therapy exert different in vivo effects on migration capacity and tumor growth
Date Issued
28 May 2013
Access level
open access
Resource Type
journal article
Author(s)
Mendoza G.
Oberg D.
Burnet J.
Simon C.
Cervello I.
Iglesias M.
Ramirez J.C.
Lopez-Larrubia P.
Quintanilla M.
Martin-Duque P.
Instituto Aragones de Ciencias de la Salud
Publisher(s)
BioMed Central Ltd
Springer Nature
Abstract
Background: Mesenchymal stem cells (MSCs) have been promoted as an attractive option to use as cellular delivery vehicles to carry anti-tumor agents, owing to their ability to home into tumor sites and secrete cytokines. Multiple isolated populations have been described as MSCs, but despite extensive in vitro characterization, little is known about their in vivo behavior.The aim of this study was to investigate the efficacy and efficiency of different MSC lineages derived from five different sources (bone marrow, adipose tissue, epithelial endometrium, stroma endometrium, and amniotic membrane), in order to assess their adequacy for cell-based anti-tumor therapies. Our study shows the crucial importance of understanding the interaction between MSCs and tumor cells, and provides both information and a methodological approach, which could be used to develop safer and more accurate targeted therapeutic applications.Methods: We first measured the in vivo migration capacity and effect on tumor growth of the different MSCs using two imaging techniques: (i) single-photon emission computed tomography combined with computed tomography (SPECT-CT), using the human sodium iodine symporter gene (hNIS) and (ii) magnetic resonance imaging using superparamagnetic iron oxide. We then sought correlations between these parameters and expression of pluripotency-related or migration-related genes.Results: Our results show that migration of human bone marrow-derived MSCs was significantly reduced and slower than that obtained with the other MSCs assayed and also with human induced pluripotent stem cells (hiPSCs). The qPCR data clearly show that MSCs and hiPSCs exert a very different pluripotency pattern, which correlates with the differences observed in their engraftment capacity and with their effects on tumor growth.Conclusion: This study reveals differences in MSC recruitment/migration toward the tumor site and the corresponding effects on tumor growth. Three observations stand out: 1) tracking of the stem cell is essential to check the safety and efficacy of cell therapies; 2) the MSC lineage to be used in the cell therapy needs to be carefully chosen to balance efficacy and safety for a particular tumor type; and 3) different pluripotency and mobility patterns can be linked to the engraftment capacity of the MSCs, and should be checked as part of the clinical characterization of the lineage. © 2013 Belmar-Lopez et al.; licensee BioMed Central Ltd.
Volume
11
Issue
1
Language
English
OCDE Knowledge area
Neurología clínica Biología celular, Microbiología
Scopus EID
2-s2.0-84878258921
PubMed ID
Source
BMC Medicine
ISSN of the container
17417015
Sponsor(s)
This work was supported by FIS (PI080750), DGA (PI041/08, B84, PI086/09), MMA Fund (ICS/08/0050), PROMETEO/2008/163; CTQ-2010-20960-C02-02; S2010/BMD-2349, PIPAMER-0912, and PIPAMER-1214. CB-L was funded by fellowships ICS/08/0050 and DGA PI-086/09, GM by PIPAMER-0912, and PMD by the Araid Fund. We are grateful to Dr Hugo Cabedo and Dr Jose Antonio Gómez-Sánchez for help with the qPCR studies, and to Juan Miguel Sanchez, Camino Latorre, and Rebeca Guerrero for technical assistance. We also thank Professor James McCue and Dr Nancy d’Cruz for their assistance in language editing.
Sources of information: Directorio de Producción Científica Scopus