Title
Use of temporal neural networks for prognosis and dynamic monitoring: Comparative studies of three recurrent neural networks
Other title
Utilisation des réseaux de neurones temporels pour le pronostic et la surveillance dynamique: Etude comparative de trois réseaux de neurones récurrents
Date Issued
01 December 2005
Access level
metadata only access
Resource Type
journal article
Author(s)
Laboratoire d'Automatique de Besançon
Abstract
This article gives a state of the art of temporal neural networks and a comparison of three recurrent neural network which are most representative for applications of dynamic monitoring and prognosis. The criteria of selection of these networks are at two levels: a temporal criterion and an architectural criterion. Following the application of these criteria, three recurrent networks seem relevant: the RRBF, the R2BF and the DGNN. Tests using a benchmark of dynamic monitoring and a benchmark of prognosis enable us to evaluate the performances of the three temporal networks in term of computing and processing capacity time.
Start page
913
End page
950
Volume
19
Issue
6
Language
French
OCDE Knowledge area
Ciencias de la computación
Ingeniería de sistemas y comunicaciones
Subjects
Scopus EID
2-s2.0-33645863461
Source
Revue d'Intelligence Artificielle
ISSN of the container
0992499X
Sources of information:
Directorio de Producción Científica
Scopus