Title
Absolutely continuous restrictions of a Dirac measure and non-trivial zeros of the Riemann zeta function
Other title
Restrictions absolument continues d'une mesure de Dirac et zéros non triviaux de la fonction zêta de Riemann
Date Issued
01 April 2011
Access level
open access
Resource Type
journal article
Abstract
It is shown that the Dirac measure δ(f)=f(1) defined on the Banach space C([0,1]) of complex valued continuous functions defined on the interval [0,1], has an absolutely continuous restriction to an infinite dimensional subspace R of C([0,1]), that is. f(1)=10l(x)f(x)dx, ∀f∈. Each non-trivial zero of the Riemann zeta function determines a different Radon-Nikodym density l∈L1([0,1]). The Riemann Hypothesis holds if and only if none of these densities belongs to L2([0,1]) or if and only if R is dense in L2([0,1]). © 2011 Académie des sciences.
Start page
357
End page
359
Volume
349
Issue
August 7
Language
French
OCDE Knowledge area
Matemáticas
Scopus EID
2-s2.0-79954767156
Source
Comptes Rendus Mathematique
ISSN of the container
1631073X
DOI of the container
10.1016/j.crma.2011.03.002
Sources of information: Directorio de Producción Científica Scopus