Title
Unveiling the effect of low ph on the sars-cov-2 main protease by molecular dynamics simulations
Date Issued
01 November 2021
Access level
open access
Resource Type
journal article
Author(s)
Publisher(s)
MDPI
Abstract
(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computational techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demonstrate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.
Volume
13
Issue
21
Language
English
OCDE Knowledge area
Ciencias naturales
Química
Subjects
Scopus EID
2-s2.0-85118756051
Source
Polymers
ISSN of the container
20734360
Sponsor(s)
Funding: S.M. and F.M. acknowledge the financial support from Generalitat de Catalunya (Grant 2017SGR1033). H.LB.-C., S.M. and F.M. acknowledge the Spanish Structures of Excellence María de Maeztu program through (Grant MDM-2017(0767). M.N. gratefully acknowledged for the funding of the EOSCsecretariat.eu—funding from the European Union’s Horizon Programme call H2020-INFRAEOSC-05-2018-2019, grant agreement number 831644. The authors thankfully acknowledge the computer resources at Pirineus (CSUC from Generalitat de Catalunya) and the technical support provided by Marenostrum at Barcelona Supercomputing centre (RES-QSB-2020-2-0013). The author M.N. is gratefully acknowledged for the computing time granted through Nestum Cluster funded by the ERDF Project BG161PO003-1.2.05-0001-C0001 at Sofia Tech Park, Sofia, Bulgaria.
Sources of information:
Directorio de Producción Científica
Scopus