Title
1T-Phase Transition Metal Dichalcogenides (MoS2, MoSe2, WS2, and WSe2) with Fast Heterogeneous Electron Transfer: Application on Second-Generation Enzyme-Based Biosensor
Date Issued
22 November 2017
Access level
metadata only access
Resource Type
journal article
Author(s)
Rohaizad N.
Sofer Z.
Pumera M.
Nanyang Technological University
Publisher(s)
American Chemical Society
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have been in the spotlight for their intriguing properties, including a tunable band gap and fast heterogeneous electron-transfer (HET) rate. Understandably, they are especially attractive in the field of electrochemical biosensors. In this article, HET capabilities of various TMDs (MoS2, MoSe2, WS2, and WSe2) within group VI chemically exfoliated via t-BuLi intercalation are studied and these capabilities are used in the second generation electrochemical glucose biosensor. Strikingly, tungsten dichalcogenides (WS2 and WSe2) exhibit superior HET properties compared to that of their molybdenum counterparts (MoS2 and MoSe2). When incorporated into second generation glucose biosensors, WS2 and WSe2 generated a higher electrochemical responses than that of MoS2 and MoSe2, following the same trend as expected. The commendable performance by WX2 is attributed to the dominance of 1T phase, revealed by characterization data. The developed and optimized 1T WX2-based biosensor achieved analytical requirements of selectivity, wide linear ranges, as well as low limits of detection and quantification. The outstanding electrochemical performances of WS2 and WSe2 are to be recognized, adding on to the fact that they are not decorated with any metal nanoparticles. This is imperative to showcase the real potential of two-dimensional TMDs in electrochemical biosensors.
Start page
40697
End page
40706
Volume
9
Issue
46
Language
English
OCDE Knowledge area
Ingeniería de materiales Bioquímica, Biología molecular Electroquímica
Scopus EID
2-s2.0-85035022700
PubMed ID
Source
ACS Applied Materials and Interfaces
ISSN of the container
19448244
Sponsor(s)
M.P. acknowledges a Tier 1 grant (99/13) from the Ministry of Education, Singapore. Z.S. was supported by Czech Science Foundation (GACR No. 16-05167S). This work was created with the financial support of the Neuron Foundation for science support. This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/ 0000444 financed by the EFRR).
Sources of information: Directorio de Producción Científica Scopus