Title
Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2
Date Issued
01 October 2017
Access level
open access
Resource Type
journal article
Author(s)
Aaboud M.
Aad G.
Abbott B.
Abdallah J.
Abdinov O.
Abeloos B.
Abidi S.H.
AbouZeid O.S.
Abraham N.L.
Abramowicz H.
Abreu H.
Abreu R.
Abulaiti Y.
Acharya B.S.
Adachi S.
Adamczyk L.
Adelman J.
Adersberger M.
Adye T.
Affolder A.A.
Agatonovic-Jovin T.
Agheorghiesei C.
Aguilar-Saavedra J.A.
Ahlen S.P.
Ahmadov F.
Aielli G.
Akatsuka S.
Akerstedt H.
Åkesson T.P.A.
Akimov A.V.
Alberghi G.L.
Albert J.
Albicocco P.
Alconada Verzini M.J.
Aleksa M.
Aleksandrov I.N.
Alexa C.
Alexander G.
Alexopoulos T.
Alhroob M.
Ali B.
Aliev M.
Alimonti G.
Alison J.
Alkire S.P.
Allbrooke B.M.M.
Allen B.W.
Allport P.P.
Aloisio A.
Alonso A.
Alonso F.
Alpigiani C.
Alshehri A.A.
Alstaty M.
Alvarez Gonzalez B.
Álvarez Piqueras D.
Alviggi M.G.
Amadio B.T.
Amaral Coutinho Y.
Amelung C.
Amidei D.
Santos S.P.A.D.
Amorim A.
Amoroso S.
Amundsen G.
Anastopoulos C.
Ancu L.S.
Andari N.
Andeen T.
Anders C.F.
Anders J.K.
Anderson K.J.
Andreazza A.
Andrei V.
Angelidakis S.
Angelozzi I.
Angerami A.
Anisenkov A.V.
Anjos N.
Annovi A.
Antel C.
Antonelli M.
Antonov A.
Antrim D.J.
Anulli F.
Aoki M.
Aperio Bella L.
Arabidze G.
Arai Y.
Araque J.P.
Araujo Ferraz V.
Arce A.T.H.
Ardell R.E.
Arduh F.A.
Arguin J.F.
Argyropoulos S.
Arik M.
Armbruster A.J.
Armitage L.J.
Arnaez O.
Publisher(s)
Springer New York LLC
Abstract
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb- 1 of data collected by the ATLAS experiment and simulation of proton–proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is 0.061±0.006(stat.)±0.014(syst.) and 0.093±0.017(stat.)±0.021(syst.) for jet transverse momenta of 200–400 GeV and 1400–1600 GeV , respectively.
Volume
77
Issue
10
Language
English
OCDE Knowledge area
Física de partículas, Campos de la Física
Subjects
Scopus EID
2-s2.0-85031414979
Source
European Physical Journal C
ISSN of the container
14346044
Sponsor(s)
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wal-lenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [29].
Sources of information:
Directorio de Producción Científica
Scopus