Title
Protein denaturation at a single-molecule level: The effect of nonpolar environments and its implications on the unfolding mechanism by proteases
Date Issued
21 February 2015
Access level
metadata only access
Resource Type
research article
Author(s)
Cheng B.
Wu S.
Liu S.
Yu J.
Cui S.
University of California Berkeley
Abstract
Most proteins are typically folded into predetermined three-dimensional structures in the aqueous cellular environment. However, proteins can be exposed to a nonpolar environment under certain conditions, such as inside the central cavity of chaperones and unfoldases during protein degradation. It remains unclear how folded proteins behave when moved from an aqueous solvent to a nonpolar one. Here, we employed single-molecule atomic force microscopy and molecular dynamics (MD) simulations to investigate the structural and mechanical variations of a polyprotein, I278, during the change from a polar to a nonpolar environment. We found that the polyprotein was unfolded into an unstructured polypeptide spontaneously when pulled into nonpolar solvents. This finding was corroborated by MD simulations where I27 was dragged from water into a nonpolar solvent, revealing details of the unfolding process at the water/nonpolar solvent interface. These results highlight the importance of water in maintaining folding stability, and provide insights into the response of folded proteins to local hydrophobic environments.
Start page
2970
End page
2977
Volume
7
Issue
7
Language
English
OCDE Knowledge area
Ingeniería de materiales
Scopus EID
2-s2.0-84922805132
PubMed ID
Source
Nanoscale
ISSN of the container
20403364
Sources of information: Directorio de Producción Científica Scopus