Title
Assembly of a Noncovalent DNA junction on graphene sheets and electron transport characteristics
Date Issued
19 December 2013
Access level
metadata only access
Resource Type
journal article
Author(s)
Texas A and M University
Abstract
Single-stranded (ss) DNA readily absorbs on graphene nanoribons (GNR) due to van der Waals interactions. Such absorption can be used for a single ssDNA characterization, enabling potential applications in biotechnology as well as in chemical and biological sensing. We analyze, using molecular dynamics simulations, the attachment process of the DNA codon GAG drifted by an external electric field on a gapped graphene nanoribbon. We calculate the quantum electron transport through a noncovalent junction GNR-DNA surrounded by a water monolayer with sodium counterions. We find that the GNR-DNA junction is stable in aqueous conditions at room temperature and at 330K. The DNA molecule causes a smooth transition to the conductive state of the gapped graphene; we estimate a detectable electronic signal of ∼2 nA, which allows us to identify the DNA molecule bridging the gapped graphene. © 2013 American Chemical Society.
Start page
26441
End page
26453
Volume
117
Issue
50
Language
English
OCDE Knowledge area
Ingeniería eléctrica, Ingeniería electrónica Ingeniería química
Scopus EID
2-s2.0-84890818972
Source
Journal of Physical Chemistry C
ISSN of the container
19327455
Sources of information: Directorio de Producción Científica Scopus