Title
Clinical RNA sequencing confirms compound heterozygous intronic variants in RYR1 in a patient with congenital myopathy, respiratory failure, neonatal brain hemorrhage, and d-transposition of the great arteries
Date Issued
01 October 2021
Access level
open access
Resource Type
journal article
Author(s)
Cincinnati Children’s Hospital Medical Center
Abstract
Background: Defects in the RYR1 (OMIM#180901) gene lead to Ryanodine receptor type 1-related myopathies (RYR1-RM); the most common subgroup of congenital myopathies. Methods: Congenital myopathy presents a diagnostic challenge due to the need for multiple testing modalities to identify the many different genetic etiologies. In this case, the patient remained undiagnosed after whole-exome sequencing (WES), chromosomal microarray, methylation analysis, targeted deletion and duplication studies, and targeted repeat expansion studies. Clinical whole-genome sequencing (WGS) was then pursued as part of a research study to identify a diagnosis. Results: WGS identified compound heterozygous RYR1 intronic variants, RNA sequencing confirmed both variants to be pathogenic causing RYR1-RM in a phenotype of severe congenital hypotonia with respiratory failure from birth, neonatal brain hemorrhage, and congenital heart disease involving transposition of the great arteries. Conclusion: While there is an ongoing debate about the clinical superiority of WGS versus WES for patients with a suspected genetic condition, this scenario highlights a weakness of WES as well as the added cost and delay in diagnosis timing with having WGS follow WES or even ending further genetic testing with a negative WES. While knowledge gaps still exist for many intronic variants, transcriptome analysis provides a way of validating the resulting dysfunction caused by these variants and thus allowing for appropriate pathogenicity classification. This is the second published case report of a patient with pathogenic intronic variants in RYR1-RM, with clinical RNA testing confirming variant pathogenicity and therefore the diagnosis suggesting that for some patients careful analysis of a patient's genome and transcriptome are required for a complete genetic evaluation. The diagnostic odyssey experienced by this patient highlights the importance of early, rapid WGS.
Volume
9
Issue
10
Language
English
OCDE Knowledge area
Reumatología
Subjects
Scopus EID
2-s2.0-85114985943
PubMed ID
Source
Molecular Genetics and Genomic Medicine
ISSN of the container
23249269
Sources of information:
Directorio de Producción Científica
Scopus