Title
Tension induces a base-paired overstretched DNA conformation
Date Issued
18 September 2012
Access level
open access
Resource Type
journal article
Author(s)
Bosaeus N.
El-Sagheer A.H.
Brown T.
Smith S.B.
Åkerman B.
Nordeń B.
University of California
Abstract
Mixed-sequence DNA molecules undergo mechanical overstretching by approximately 70% at 60-70 pN. Since its initial discovery 15 y ago, a debate has arisen as to whether the molecule adopts a new form [Cluzel P, et al. (1996) Science 271:792-794; Smith SB, Cui Y, Bustamante C (1996) Science 271:795-799], or simply denatures under tension [van Mameren J, et al. (2009) Proc Natl Acad Sci USA 106:18231-18236]. Here, we resolve this controversy by using optical tweezers to extend small 60-64 bp single DNA duplex molecules whose base content can be designed at will. We show that when AT content is high (70%), a force-induced denaturation of the DNA helix ensues at 62 pN that is accompanied by an extension of the molecule of approximately 70%. By contrast, GC-rich sequences (60% GC) are found to undergo a reversible overstretching transition into a distinct form that is characterized by a 51% extension and that remains base-paired. For the first time, results proving the existence of a stretched basepaired form of DNA can be presented. The extension observed in the reversible transition coincides with that produced on DNA by binding of bacterial RecA and human Rad51, pointing to its possible relevance in homologous recombination.
Start page
15179
End page
15184
Volume
109
Issue
38
Language
English
OCDE Knowledge area
Biofísica Genética, Herencia
Scopus EID
2-s2.0-84866544846
PubMed ID
Source
Proceedings of the National Academy of Sciences of the United States of America
ISSN of the container
00278424
Sponsor(s)
Seventh Framework Programme 227700 FP7
Sources of information: Directorio de Producción Científica Scopus