Title
Nanostructured FeNiZrB powders synthesized by high-energy ball milling: structural and hyperfine characterizations
Date Issued
01 December 2021
Access level
metadata only access
Resource Type
journal article
Publisher(s)
Springer Science and Business Media Deutschland GmbH
Abstract
Nanostructured (Fe0.5Ni0.5)92Zr5B3 alloy was prepared by milling a blend of pre-alloyed Fe50Ni50 precursor and high purity chemical elemental powders of Zr and B in a high-energy ball mill setup. Rietveld refinement of the X-ray diffraction pattern of the final sample (30 h of milling) revealed presence of two Fe–Ni rich phases [disordered fcc γ–(Fe,Ni) alloy with Zr and B and the atomically ordered FeNi] with grain sizes in nanometer scale. Fe and Ni atoms were locally probed using extended X-ray absorption fine structure EXAFS and 57Fe Mössbauer spectroscopy. Whilst EXAFS analysis of milled samples suggested structural properties similar to the pre-alloyed precursor, Mössbauer data have shown the Fe2B phase formation after 3 h of milling, suggesting that the final material consists of nanograins of ordered FeNi (8%) and Fe2B (6%) phases dispersed in solid solution of γ–(Fe,Ni) alloy rich in nickel (86%) with Zr and B atoms impregnated in grain boundary defects.
Volume
242
Issue
1
Language
English
OCDE Knowledge area
Física de partículas, Campos de la Física Nano-materiales
Scopus EID
2-s2.0-85118793182
Source
Hyperfine Interactions
ISSN of the container
03043843
Sponsor(s)
This work was supported by the Brazilian Synchrotron Light Laboratory (LNLS) under proposal XAFS1 – 1304. The authors would like to acknowledge the financial support provided by the National Fund for Scientific and Technological Development, FONDECYT [ contract 011-2014-FONDECYT], FAPERJ-Brazil (Emeritus fellowship, EBS, E26/210.715/2014, E-26/010.002990/2014 grants), FINEP, FAPES, CNPq, and Latin American Center of Physics. The authors would also like to acknowledge the San Marcos National University for providing research facilities and financial support [CSI-projects: 061301011-0801301011-091301031].
Sources of information: Directorio de Producción Científica Scopus