Title
An improved 1D diode model for the accurate modeling of parasitics in silicon modulators
Date Issued
01 January 2021
Access level
metadata only access
Resource Type
conference paper
Author(s)
Prosopio-Galarza R.R.
Universidad Estatal de Campinas
Publisher(s)
SPIE
Abstract
Silicon modulators paved the way for silicon photonics to take control of optical interconnects. Since its popularization, most works use the 1-D diode model approximation to design the horizontal PN junction, which estimates the modulator bandwidth and efficiency. Some works do not even consider the effects of fringe capacitance, alleging that the junction's dimensions are large. The 1-D model is suitable for vertically uniform PN junctions. However, there are essential deviations for the typical rib waveguide used in most horizontal-junction silicon modulators. Our work aims to quantify such deviations incorporating details from 2D model simulations and offer a corrected 1-D model for estimating modulation bandwidth. This study was carried out as follows: Firstly, we incorporated an improved scheme for phase shifting and loss for different junction locations and widely used doping concentrations. Next, we analyzed the generation-recombination effects and their impact on the depletion width at the top and bottom of the waveguide. We calculated the depletion width via the 1-D model and the two-dimensional Poisson's equation finite-element calculation for the rib and identified an important mismatch. Lastly, we propose and demonstrate an accurate equivalent circuit with our 1-D model corrections. Our model considers the total depletion capacitance, the fringe capacitance, the capacitance due to the wider depletion widths at the top and bottom surfaces of the diode, and other capacitive effects at the border of the rib as a result of high reverse bias. We found that although the 1-D model is well-suited for small reverse biases, higher voltages and extreme junction locations affect the bandwidth's estimation dramatically.
Volume
11691
Language
English
OCDE Knowledge area
Ingeniería eléctrica, Ingeniería electrónica
Sistemas de automatización, Sistemas de control
Subjects
Scopus EID
2-s2.0-85105941485
Source
Proceedings of SPIE - The International Society for Optical Engineering
ISSN of the container
0277786X
ISBN of the container
9781510642171
Conference
Silicon Photonics XVI 2021
Sponsor(s)
The authors acknowledge funding support from CONCYTEC-FONDECYT within the call E041-01 [contract number 015-2018-FONDECYT/BM]. H.E.H. acknowledges funding support from the Brazilian Agency CNPq under Projects No 465757/2014-6 (INCT FOTONICOM) and No 312714/2019-2 (HEH’s Research Productivity Grant); and by the Sao Paulo Research Foundation (FAPESP) under Project No 2015/24517-8 (Thematic Project “Photonics for Next Generation Internet”).
Sources of information:
Directorio de Producción Científica
Scopus