Title
Constraining the NuMI neutrino flux using inverse muon decay reactions in MINERvA
Date Issued
01 November 2021
Access level
open access
Resource Type
journal article
Author(s)
Ruterbories D.
Ahmad Dar Z.
Akbar F.
Ascencio M.V.
Bashyal A.
Bercellie A.
Betancourt M.
Bodek A.
Bonilla J.L.
Bravar A.
Budd H.
Caceres G.
Cai T.
Carneiro M.F.
Díaz G.A.
Da Motta H.
Felix J.
Fields L.
Filkins A.
Fine R.
Gallagher H.
Ghosh A.
Gran R.
Harris D.A.
Henry S.
Jena D.
Jena S.
Kleykamp J.
Kordosky M.
Last D.
Le T.
Lozano A.
Lu X.G.
Maher E.
Manly S.
Mann W.A.
Mauger C.
McFarland K.S.
McGowan A.M.
Messerly B.
Miller J.
Morfín J.G.
Naples D.
Nelson J.K.
Nguyen C.
Norrick A.
Olivier A.
Paolone V.
Perdue G.N.
Plows K.J.
Ramírez M.A.
Ray H.
Schellman H.
Su H.
Sultana M.
Syrotenko V.S.
Valencia E.
Vaughan N.H.
Waldron A.V.
Yaeggy B.
Yang K.
Zazueta L.
Publisher(s)
American Physical Society
Abstract
Inverse muon decay, νμe-→μ-νe, is a reaction whose cross section can be predicted with very small uncertainties. It has a neutrino energy threshold of ≈11 GeV and can be used to constrain the high-energy part of the flux in the NuMI neutrino beam. This reaction is the dominant source of events which only contain high-energy muons nearly parallel to the direction of the neutrino beam. We have isolated a sample of hundreds of such events in neutrino and antineutrino enhanced beams, and have constrained the predicted high-energy flux.
Volume
104
Issue
9
Language
English
OCDE Knowledge area
Física de partículas, Campos de la Física
Scopus EID
2-s2.0-85120432092
Source
Physical Review D
ISSN of the container
24700010
Sponsor(s)
This document was prepared by members of the MINERvA Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. These resources included support for the MINERvA construction project, and support for construction also was granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA); by CAPES and CNPq (Brazil); by CoNaCyT (Mexico); by Proyecto Basal FB 0821, CONICYT PIA ACT1413, and Fondecyt 3170845 and 11130133 (Chile); by CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica), DGI-PUCP (Dirección de Gestión de la Investigación—Pontificia Universidad Católica del Peru), and VRI-UNI (Vice-Rectorate for Research of National University of Engineering) (Peru); NCN Opus Grant No. 2016/21/B/ST2/01092 (Poland); by Science and Technology Facilities Council (UK); and by EU Horizon 2020 Marie Skodowska-Curie Action. D. Ruterbories gratefully acknowledges support from a Cottrell Postdoctoral Fellowship, Research Corporation for Scientific Advancement Grant No. 27467 and National Science Foundation Grant No. CHE2039044. We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line, the detector, and computing infrastructure.
Sources of information: Directorio de Producción Científica Scopus