Title
Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip
Date Issued
2019
Access level
open access
Resource Type
journal article
Author(s)
More, M
Rothschild, M
Bertolini, F
de Leon, FAP
Publisher(s)
Frontiers Media S.A.
Abstract
Alpacas are one of four South American Camelid species living in the highlands of the Andes. Production of alpaca fiber contributes to the economy of the region and the livelihood of many rural families. Fiber quantity and quality are important and in need of a modern breeding program based on genomic selection to accelerate genetic gain. To achieve this is necessary to discover enough molecular markers, single nucleotide polymorphisms (SNPs) in particular, to provide genome coverage and facilitate genome wide association studies to fiber production characteristics. The aim of this study was to discover alpaca SNPs by genotyping forty alpaca DNA samples using the BovineHD Genotyping Beadchip. Data analysis was performed with GenomeStudio (Illumina) software. Because different filters and thresholds are reported in the literature we investigated the effects of no-call threshold (≥0.05, ≥0.15, and ≥0.25) and call frequency (≥0.9 and =1.0) in identifying positive SNPs. Average GC Scores, calculated as the average of the 10% and 50% GenCall scores for each SNP (≥0.70) and the GenTrain score ≥ 0.25 parameters were applied to all comparisons. SNPs with minor allele frequency (MAF) ≥ 0.05 or ≥ 0.01 were retained. Since detection of SNPs is based on the stable binding of oligonucleotide probes to the target DNA immediately adjacent to the variant nucleotide, all positive SNP flanking sequences showing perfect alignments between the bovine and alpaca genomes for the first 21 or 26 nucleotides flanking the variant nucleotide at either side were selected. Only SNPs localized in one scaffold were assumed unique. Unique SNPs identified in both reference genomes were kept and mapped on the Vicugna_pacos 2.0.2 genome. The effects of the no-call threshold ≥ 0.25, call frequency = 1 and average GC ≥ 0.7 were meaningful and identified 6756 SNPs of which 400 were unique and polymorphic (MAF ≥ 0.01). Assignment to alpaca chromosomes was possible for 292 SNPs. Likewise, 209 SNPs were localized in 202 alpaca gene loci and 29 of these share the same loci with the dromedary. Interestingly, 69 of 400 alpaca SNPs have 100% similarity with dromedary. © 2019 More, Gutiérrez, Rothschild, Bertolini and Ponce de León.
Volume
10
Issue
APR
Number
7
Language
English
Scopus EID
2-s2.0-85067934964
Source
Frontiers in Genetics
ISSN of the container
1664-8021
Sponsor(s)
The authors acknowledge the financial support from CONCYTEC through project 125-2015 FONDECYT, and VLIR-UOS funding to the UNALM (IUC) programme. Opinions of the author(s) do not automatically reflect those of either the Belgian government or VLIR-UOS, and can bind neither the Belgian Government nor VLIR-UOS. Funding was also provided, in part, by Hatch project MIN-16-103, MN Experiment Station, the State of Iowa and the Ensminger Endowment Fund.
Sources of information: Directorio de Producción Científica