Title
A FAIR evaluation of public datasets for stress detection systems
Date Issued
16 November 2020
Access level
metadata only access
Resource Type
conference paper
Publisher(s)
IEEE Computer Society
Abstract
Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle these findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community.
Volume
2020-November
Language
English
OCDE Knowledge area
Ingeniería de sistemas y comunicaciones
Informática y Ciencias de la Información
Subjects
Scopus EID
2-s2.0-85098624680
Source
Proceedings - International Conference of the Chilean Computer Science Society, SCCC
Resource of which it is part
Proceedings - International Conference of the Chilean Computer Science Society, SCCC
ISSN of the container
15224902
ISBN of the container
9781728183282
Conference
39th International Conference of the Chilean Computer Science Society, SCCC 2020
Sponsor(s)
A. Cuno, N. Condori-Fernandez, A. Mendoza, and W. Ramos acknowledge financial support from the “Proyecto Concytec - Banco Mundial, Mejoramiento y Ampliación de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovación Tecnológica” 8682-PE, through its executing unit FONDECYT [Contract Nº 014-2019-FONDECYT-BM-INC.INV]. Also, this work has been partially supported by Datos 4.0 (TIN2016-78011-C4-1-R) funded by MINECO-AEI/FEDER-UE.
Sources of information:
Directorio de Producción Científica
Scopus