Title
Granular superconductivity in metallic and insulating nanocrystalline boron-doped diamond thin films
Date Issued
22 September 2010
Access level
open access
Resource Type
journal article
Author(s)
Abstract
The low-temperature electrical transport properties of nanocrystalline boron-doped diamond (b-NCD) thin films have been found to be strongly affected by the system's granularity. The important differences between the high and low-temperature behaviour are caused by the inhomogeneous nucleation of superconductivity in the samples. In this paper we will discuss the experimental data obtained on several b-NCD thin films, which were studied by either varying their thickness or boron concentration. It will be shown that the low-temperature properties are influenced by the b-NCD grain boundaries as well as by the appearance of an intrinsic granularity inside these granules. Moreover, superconducting effects have been found to be present even in insulating b-NCD films and are responsible for the negative magnetoresistance regime observed at low temperatures. On the other hand, the low-temperature electrical transport properties of b-NCD films show important similarities with those observed for granular superconductors. © 2010 IOP Publishing Ltd.
Volume
43
Issue
37
Language
English
OCDE Knowledge area
Física y Astronomía
Física y Astronomía
Scopus EID
2-s2.0-78349245979
Source
Journal of Physics D: Applied Physics
ISSN of the container
00223727
Sources of information:
Directorio de Producción Científica
Scopus