Title
Finding defective software modules by means of data mining techniques
Date Issued
01 December 2009
Access level
metadata only access
Resource Type
conference paper
Author(s)
Riquelme J.C.
Ruiz R.
Rodríguez D.
Universidad Pablo de Olavide
Abstract
The characterization of defective modules in software engineering remains a challenge. In this work, we use data mining techniques to search for rules that indicate modules with a high probability of being defective. Using datasets from the PROMISE repository1, we first applied feature selection to work only with those attributes from the datasets capable of predicting defective modules. Then, a genetic algorithm search for rules characterising subgroups with a high probability of being defective. This algorithm overcomes the problem of unbalanced datasets where the number of non-defective samples in the dataset highly outnumbers the defective ones. © Copyright 2010 IEEE - All Rights Reserved.
Start page
377
End page
382
Volume
7
Issue
3
Language
Spanish
OCDE Knowledge area
Ciencias de la computación Ingeniería de sistemas y comunicaciones
Scopus EID
2-s2.0-78149391847
Source
IEEE Latin America Transactions
ISSN of the container
15480992
Conference
13th Conference on Software Engineering and Databases, JISBD'08
Source funding
Comisión Interministerial de Ciencia y Tecnología
Sponsor(s)
Este trabajo ha sido elaborado en el marco del proyecto de investigación oficial TIN2007-68084-C02-00, financiado por la Comisión Interministerial de Ciencia y Tecnología (CICYT).
Sources of information: Directorio de Producción Científica Scopus