Title
Developing a Reference of Normal Lung Sounds in Healthy Peruvian Children
Date Issued
01 October 2014
Access level
open access
Resource Type
journal article
Author(s)
Ellington L.E.
Emmanouilidou D.
Elhilali M.
Tielsch J.M.
Chavez M.A.
Marin-Concha J.
West J.
Checkley W.
Publisher(s)
Springer New York LLC
Abstract
Purpose: Lung auscultation has long been a standard of care for the diagnosis of respiratory diseases. Recent advances in electronic auscultation and signal processing have yet to find clinical acceptance; however, computerized lung sound analysis may be ideal for pediatric populations in settings, where skilled healthcare providers are commonly unavailable. We described features of normal lung sounds in young children using a novel signal processing approach to lay a foundation for identifying pathologic respiratory sounds. Methods: 186 healthy children with normal pulmonary exams and without respiratory complaints were enrolled at a tertiary care hospital in Lima, Peru. Lung sounds were recorded at eight thoracic sites using a digital stethoscope. 151 (81 %) of the recordings were eligible for further analysis. Heavy-crying segments were automatically rejected and features extracted from spectral and temporal signal representations contributed to profiling of lung sounds. Results: Mean age, height, and weight among study participants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and 12.0 kg (SD 3.6), respectively; and, 47 % were boys. We identified ten distinct spectral and spectro-temporal signal parameters and most demonstrated linear relationships with age, height, and weight, while no differences with genders were noted. Older children had a faster decaying spectrum than younger ones. Features like spectral peak width, lower-frequency Mel-frequency cepstral coefficients, and spectro-temporal modulations also showed variations with recording site. Conclusions: Lung sound extracted features varied significantly with child characteristics and lung site. A comparison with adult studies revealed differences in the extracted features for children. While sound-reduction techniques will improve analysis, we offer a novel, reproducible tool for sound analysis in real-world environments.
Start page
765
End page
773
Volume
192
Issue
5
Language
English
OCDE Knowledge area
Pediatría
Sistema respiratorio
Subjects
Scopus EID
2-s2.0-84931370778
PubMed ID
Source
Lung
ISSN of the container
03412040
Sponsor(s)
Acknowledgments Additional support came from A.B. PRISMA, Instituto Nacional de Salud del Niño, and collaborators at JHU and Cincinnati Children’s Hospital. Thinklabs Medical (Centennial, CO) generously provided us with electronic stethoscopes at discount. Laura Ellington was supported by the Doris Duke Charitable Foundation Clinical Research Fellowship. Dimitra Emmanouilidou and Mounya Elhilali were partially supported by grants IIS-0846112 (NSF), 1R01AG036424-01 (NIH), N000141010278 (ONR), and N00014-12-1-0740 (ONR). William Checkley and James Tielsch were partially supported by the Bill and Melinda Gates Foundation (OPP1017682).
Sources of information:
Directorio de Producción Científica
Scopus