Title
Choice functions for autonomous search in constraint programming: GA vs. PSO
Other title
[Funkcije izbora za samostalno pretraživanje u ograničenom programiranju: Genetski algoritam nasuprot optimizaciji roja čestica]
Date Issued
01 August 2013
Access level
metadata only access
Resource Type
journal article
Author(s)
Crawford B.
Misra S.
Palma W.
Monfroy E.
Castro C.
Paredes F.
Pontificia Universidad Católica de Valparaíso
Publisher(s)
Strojarski Facultet
Sveuciliste Josipa Jurja Strossmayera u Osijeki
Abstract
The variable and value ordering heuristics are a key element in Constraint Programming. Known together as the enumeration strategy they may have important consequences on the solving process. However, a suitable selection of heuristics is quite hard as their behaviour is complicated to predict. Autonomous search has been recently proposed to handle this concern. The idea is to dynamically replace strategies that exhibit poor performances by more promising ones during the solving process. This replacement is carried out by a choice function, which evaluates a given strategy in a given amount of time via quality indicators. An important phase of this process is performed by an optimizer, which aims at finely tuning the choice function in order to guarantee a precise evaluation of strategies. In this paper we evaluate the performance of two powerful choice functions: the first one supported by a genetic algorithm and the second one by a particle swarm optimizer. We present interesting results and we demonstrate the feasibility of using those optimization techniques for Autonomous Search in a Constraint Programming context.
Start page
621
End page
627
Volume
20
Issue
4
Language
English
OCDE Knowledge area
Genética, Herencia
Scopus EID
2-s2.0-84883174309
Source
Tehnicki Vjesnik
ISSN of the container
13303651
Sources of information: Directorio de Producción Científica Scopus