Title
Enzymatic characterization of the Plasmodium vivax chitinase, a potential malaria transmission-blocking target
Date Issued
01 September 2009
Access level
open access
Resource Type
journal article
Author(s)
Takeo S.
Hisamori D.
Matsuda S.
Sattabongkot J.
Tsuboi T.
University of California
Publisher(s)
Elsevier
Abstract
The chitinase (EC 3.2.1.14) of the human malaria parasite Plasmodium falciparum, PfCHT1, has been validated as a malaria transmission-blocking vaccine (TBV). The present study aimed to delineate functional characteristics of the P. vivax chitinase PvCHT1, whose primary structure differs from that of PfCHT1 by having proenzyme and chitin-binding domains. The recombinant protein rPvCHT1 expressed with a wheat germ cell-free system hydrolyzed 4-methylumbelliferone (4MU) derivatives of chitin oligosaccharides (β-1,4-poly-N-acetyl glucosamine (GlcNAc)). An anti-rPvCHT1 polyclonal antiserum reacted with in vitro-obtained P. vivax ookinetes in anterior cytoplasm, showing uneven patchy distribution. Enzymatic activity of rPvCHT1 shared the exclusive endochitinase property with parallelly expressed rPfCHT1 as demonstrated by a marked substrate preference for 4MU-GlcNAc3 compared to shorter GlcNAc substrates. While rPvCHT1 was found to be sensitive to the general family-18 chitinase inhibitor, allosamidin, its pH (maximal in neutral environment) and temperature (max. at ~ 25 °C) activity profiles and sensitivity to allosamidin (IC50 = 6 μM) were different from rPfCHT1. The results in this first report of functional rPvCHT1 synthesis indicate that the P. vivax chitinase is enzymatically close to long form Plasmodium chitinases represented by P. gallinaceum PgCHT1. © 2009 Elsevier Ireland Ltd. All rights reserved.
Start page
243
End page
248
Volume
58
Issue
3
Language
English
OCDE Knowledge area
Virología Medicina tropical
Scopus EID
2-s2.0-67650632796
PubMed ID
Source
Parasitology International
ISSN of the container
13835769
Sponsor(s)
The authors are grateful for vivax malaria patients at Mae Sod district, Tak Province, Thailand for providing blood specimens, as well as the staff of the Vector Borne Disease Training Center, Pra Budhabat, Saraburi, Thailand, for assistance in setting up the field sites and the staff of the Department of Entomology, AFRIMS, Bangkok, Thailand. A chitinase specific inhibitor allosamidin is a kind gift from Dr. Shohei Sakuda, University of Tokyo, Japan. This work was supported in part by Grants-in-Aid for Scientific Research (17790277, 18390129 and 19406009) and Scientific Research on Priority Areas (19041053) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and grants from the U.S. National Institutes of Health (JMV).
Sources of information: Directorio de Producción Científica Scopus