Title
Music recommendation system based on user's sentiments extracted from social networks
Date Issued
2015
Access level
metadata only access
Resource Type
conference paper
Author(s)
Rosa R.L.
Bressan G.
University of São Paulo
Publisher(s)
Institute of Electrical and Electronics Engineers Inc.
Abstract
This paper uses a sentiment intensity metric, named Sentimeter-Br2, to extract users' sentiments from different Social Networks. The framework of the recommendation system is shown in order to extract the users' phrases, which permit song recommendations based on the user preference or present sentiment intensity. Experimental subjective tests have shown that the metric produces satisfactory results.
Start page
383
End page
384
Language
English
OCDE Knowledge area
Medios de comunicación, Comunicación socio-cultural Ingeniería eléctrica, Ingeniería electrónica Ciencias de la computación
Scopus EID
2-s2.0-84936148504
ISBN
9781479975426
Resource of which it is part
2015 IEEE International Conference on Consumer Electronics, ICCE 2015
ISBN of the container
978-147997542-6
Sources of information: Directorio de Producción Científica Scopus