Title
Study of the thermo-mechanical and flammability properties of PP composites with pyrolytic solid residue from vehicle waste
Other title
[Estudio de las propiedades termo-mecánicas y de inflamabilidad de mezclas poliméricas de PP con residuos sólidos pirolíticos de desechos vehiculares]
Date Issued
01 January 2019
Access level
open access
Resource Type
conference paper
Author(s)
Publisher(s)
Latin American and Caribbean Consortium of Engineering Institutions
Abstract
The final disposal of vehicles out of use gives rise to an environmental issue, so that, in Europe there are companies dedicated to the disassembly and recovery of those components that can be reused, among these components are plastic waste. In the present research, it is proposed to treat those plastics through a pyrolytic process with the purpose of transforming them into solid residue, in order to be used as part of the additives in a flame retardant system in a polypropylene matrix. Vehicle wastes were segregated by relative density method (ASTM D 792-08), characterized and were subsequently incorporated into a process of thermal pyrolysis. Using the resultant pyrolytic solid residue (PSR), a polymer mixture was prepared which had the polypropylene as matrix. Its thermal, mechanical and flammability properties were evaluated through the Thermogravimetric analysis, Modulus of elasticity, Tensile strength, Percentage of deformation and the Limiting oxygen index. Vehicle waste (DPV) are formed by 82.97% of high density residue, which allowed to obtain 32.08% of High density pyrolytic solid residue (HDSR), while using low density waste, 6.69% of Low density pyrolytic solid waste (LDSR) was obtained. Regarding its thermo-mechanical and flammability properties, it was noted that adding the PSR obtained from low density and high density wastes influenced the properties of the polypropylene matrix. As for their mechanical properties, if we compare the matrix formed by polypropylene and retarding additives with and without PSR; the maximum strength in the polypropylene matrix with LDSR showed a slight decrease, while the matrix with HDSR showed a slight increase. In addition, in the LDSR and HDSR samples, the percentage of deformation of the material decreased by 52.02% and 49.17%, respectively. While the modulus of elasticity was increased by 30.12% for the sample with LDSR and 30.73% with HDSR. Likewise, the addition of PSR did not increase its flame retardant activity since the Limiting oxygen index value remained the same as when flame retardant additives were added, in 30%; while with HDSR it decreased to 29%. This indicates that the composition of the above-mentioned solid residues favors to the polypropylene composites considering that the addition of the PSR brought with it the decrease of the concentration of other additives used and of the polypropylene. This due to the chemical composition of the pyrolytic solid residues that act as a source of carbon and flame retardant minerals reinforcing their fireproof properties.
Volume
2019-July
Language
Spanish
OCDE Knowledge area
Ciencia de los polímeros
Ingeniería de materiales
Subjects
Scopus EID
2-s2.0-85073621838
ISBN
9780999344361
Source
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
ISSN of the container
24146390
Conference
17th LACCEI International Multi-Conference for Engineering, Education, and Technology, LACCEI 2019
Sources of information:
Directorio de Producción Científica
Scopus