Title
Physiological responses of maca (Lepidium meyenii Walp.) plants to UV radiation in its high-altitude mountain ecosystem
Date Issued
01 December 2020
Access level
open access
Resource Type
journal article
Author(s)
Huarancca Reyes T.
Crestani G.
Cruz R.
Scartazza A.
Guglielminetti L.
Publisher(s)
Nature Research
Abstract
Ultraviolet (UV) radiation is a small fraction of the solar spectrum, which acts as a key environmental modulator of plant function affecting metabolic regulation and growth. Plant species endemic to the Andes are well adapted to the harsh features of high-altitude climate, including high UV radiation. Maca (Lepidium meyenii Walpers) is a member of Brassicaceae family native to the central Andes of Peru, which grows between 3500 and 4500 m of altitude, where only highland grasses and few hardy bushes can survive. Even though maca has been the focus of recent researches, mainly due to its nutraceutical properties, knowledge regarding its adaptation mechanisms to these particular natural environmental conditions is scarce. In this study, we manipulated solar UV radiation by using UV-transmitting (Control) or blocking (UV-block) filters under field conditions (4138 m above the sea level) in order to understand the impact of UV on morphological and physiological parameters of maca crops over a complete growing season. Compared to the UV-blocking filter, under control condition a significant increase of hypocotyl weight was observed during the vegetative phase together with a marked leaf turnover. Although parameters conferring photosynthetic performance were not altered by UV, carbohydrate allocation between above and underground organs was affected. Control condition did not influence the content of secondary metabolites such as glucosinolates and phenolic compounds in hypocotyls, while some differences were observed in the rosettes. These differences were mainly related to leaf turnover and the protection of new young leaves in control plants. Altogether, the data suggest that maca plants respond to strong UV radiation at high altitudes by a coordinated remobilization and relocation of metabolites between source and sink organs via a possible UV signaling pathway.
Volume
10
Issue
1
Language
English
OCDE Knowledge area
Agricultura
Ciencias del medio ambiente
Ecología
Scopus EID
2-s2.0-85079361219
PubMed ID
Source
Scientific Reports
ISSN of the container
20452322
Sponsor(s)
T.H.R. and L.G. thank Mr. Massimo Bizzarri, Mrs. Francesca Valota and Mr. Michele Pardini for their valuable support in UV-related projects. This work was supported by Schlumberger Foundation “Faculty for the Future” to T.H.R. (2015–2017), and the Annual Research Project Competition PUCP 2017 (CAP2017) to E.C.
Sources of information:
Directorio de Producción Científica
Scopus