Title
Aiming for multibody dynamics on stable humanoid motion with Special Euclideans groups
Date Issued
01 December 2010
Access level
metadata only access
Resource Type
conference paper
Author(s)
University of Carlos III of Madrid
Abstract
This paper deals with alternative humanoid robot dynamics modelling, using the screw theory and Lie groups called the special Euclidean group (SE(3)). The dynamic models are deduced analitically. The inverse dynamics model is obtained by the Lagrangian formulation under screw theory, when the Jacobian manipulator depends on the respective twist and joint angles; on the other hand, the POE formula drives a very natural and explicit description of the Jacobian manipulator without the drawbacks of local representation. The forward dynamics were solved by propagation method from an end-effector to the center of gravity (COG) always on the SE(3). Many tests for reference dynamic walking patterns have been carried out, which are represented in simulation and experimental results. The results will be discussed in order to validate the proposed algorithms. ©2010 IEEE.
Start page
691
End page
697
Language
English
OCDE Knowledge area
Ingeniería mecánica
Mecánica aplicada
Scopus EID
2-s2.0-78651482000
Resource of which it is part
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings
ISBN of the container
978-142446675-7
Conference
23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010
Sources of information:
Directorio de Producción Científica
Scopus