Title
Plasmodium ookinete-secreted proteins secreted through a common micronemal pathway are targets of blocking malaria transmission
Date Issued
18 June 2004
Access level
open access
Resource Type
journal article
Author(s)
University of California
Publisher(s)
American Society for Biochemistry and Molecular Biology Inc.
Abstract
The mosquito midgut ookinete stage of the malaria parasite, Plasmodium, possesses microneme secretory organelles that mediate locomotion and midgut wall egress to establish sporogonic stages and subsequent transmission. The purpose of this study was 2-fold: 1) to determine whether there exists a single micronemal population with respect to soluble and membrane-associated secreted proteins; and 2) to evaluate the ookinete micronemal proteins chitinase (PgCHT1), circumsporozoite and TRAP-related protein (CTRP), and von Willebrand factor A domain-related protein (WARP) as immunological targets eliciting sera-blocking malaria parasite infectivity to mosquitoes. Indirect immunofluorescence localization studies in Plasmodium gallinaceum using specific antisera showed that all three proteins are distributed intracellularly with a similar granular cytoplasmic appearance and with focal concentration of PgCHT1 and PgCTRP, but not PgWARP, at the ookinete apical end. Immunogold double-labeling electron microscopy, using antisera against the membrane-associated protein CTRP and the soluble WARP, showed that these two proteins co-localized to the same micronemal population. Within the microneme CTRP was associated peripherally at the microneme membrane, whereas PgCHT1 and WARP were diffuse within the micronemal lumen. Sera produced against Plasmodium falciparum WARP significantly reduced the infectivity of P. gallinaceum to Aedes aegypti and P. falciparum to Anopheles mosquitoes. Antisera against PgCTRP and PgCHT1 also significantly reduced the infectivity of P. gallinaceum for A. aegypti. These results support the concept that ookinete micronemal proteins may constitute a general class of malaria transmission-blocking vaccine candidates.
Start page
26635
End page
26644
Volume
279
Issue
25
Language
English
OCDE Knowledge area
Parasitología
Enfermedades infecciosas
Inmunología
Publication version
Version of Record
Scopus EID
2-s2.0-2942705911
PubMed ID
Source
Journal of Biological Chemistry
ISSN of the container
0021-9258
Sponsor(s)
National Institute of Allergy and Infectious Diseases K02AI050049
Sources of information:
Directorio de Producción Científica
Scopus