Title
Surface plasmon propagation in novel multilayered metallic thin films
Date Issued
04 May 2012
Access level
metadata only access
Resource Type
conference paper
Author(s)
Ferri F.
Silva O.
Osorio S.
Zanatta A.
Borges B.
Weiner J.
Marega E.
Universidad de Sao Paulo
Publisher(s)
SPIE
Abstract
Multilayered Ag/Au/Ag/Au and Au/Ag/Au/Ag films with 200 nm of thickness (50 nm for each layer) were evaporated onto BK7 glass substrates. Sequences of slits (around 60-600 nm of width) were milled with a focused gallium ion beam in the films. We have undertaken a series of high-resolution measurements of the optical transmission through the slits. The transmission measurement setup consists of 488.0 nm (for the Ag/Au/Ag/Au film) and 632.8 nm (for the Au/Ag/Au/Ag sample) wavelength light beams from Ar ion and HeNe lasers, respectively, aligned to the optical axis of a microscope. The beam is focused onto the sample surface by a microscope objective in TM polarization (magnetic Hfield component parallel to the long axis of the slits). As well, theoretical estimates investigating the slits optical transmission were performed. The origin of the slits transmission is mainly attributed to plasmonic surface excitations. Based on the present results, it was possible to observe that (1) the transmission increases linearly with increasing slit width, and (2) the transmission of the multilayered structures is augmented in comparison with a single perforated metal film of equal thickness, for a fixed slit width. A very good correspondence between theory and experiment was observed. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Volume
8269
Language
English
OCDE Knowledge area
Óptica
Scopus EID
2-s2.0-84860374321
ISSN of the container
0277786X
ISBN of the container
978-081948912-8
Conference
Conference Proceedings: Proceedings of SPIE - The International Society for Optical Engineering
Sources of information: Directorio de Producción Científica Scopus