Title
Multipathogen Analysis of IgA and IgG Antigen Specificity for Selected Pathogens in Milk Produced by Women From Diverse Geographical Regions: The INSPIRE Study
Date Issued
11 February 2021
Access level
open access
Resource Type
journal article
Author(s)
McGuire M.K.
Randall A.Z.
Seppo A.E.
Järvinen K.M.
Meehan C.L.
Gindola D.
Williams J.E.
Sellen D.W.
Kamau-Mbuthia E.W.
Kamundia E.W.
Mbugua S.
Moore S.E.
Prentice A.M.
Foster J.A.
Otoo G.E.
Rodríguez J.M.
Bode L.
McGuire M.A.
Campo J.J.
Publisher(s)
Frontiers Media S.A.
Abstract
Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Volume
11
Language
English
OCDE Knowledge area
Patología Inmunología
Scopus EID
2-s2.0-85101663676
PubMed ID
Source
Frontiers in Immunology
ISSN of the container
16643224
Sponsor(s)
In addition to all of the women and infants who participated in this study, we would sincerely like to thank Linda Kvist (Lund University) and her team for overseeing milk and data collection for the Swedish cohort; Andrew Doel (MRC Unit, The Gambia) for field supervision and logistics planning, and Alansan Sey for questionnaire administration, and taking anthropometric measurements in The Gambia; Jane Odei (University of Ghana) for supervising field data collection in Ghana; Katherine Flores (Washington State University), Dubale Gebeyehu (Hawassa University), Haile Belachew (Hawassa University), and Birhanu Sintayehu for planning, logistics, recruiting, and data collection and administration and staff at Adare Hospital in Hawassa for assistance with logistics in Ethiopia; Catherine O. Sarange (Egerton University) for field supervision and logistics planning, and Milka W. Churuge and Minne M. Gachau for recruiting, questionnaire administration, and taking anthropometric measurements in Kenya; Gisella Barbagelatta (Instituto de Investigación Nutricional) for field supervision and logistics planning, and Patricia Calderon (Instituto de Investigación Nutricional) for recruiting, questionnaire administration, and taking anthropometric measurements, and Roxana Barrutia (Instituto de Investigación Nutricional) for the management and shipping of samples in Peru; Lorena Ruíz (Complutense University of Madrid) for technical assistance and expertise, and M. Ángeles Checa (Zaragoza, Spain), Katalina Legarra (Guernica, Spain), and Julia Mínguez (Huesca, Spain) for participation in the collection of samples in Spain; Kirsti Kaski and Maije Sjöstrand (both Helsingborg Hospital) for participation in the collection of samples, questionnaire administration, and anthropometric measurements in Sweden; Renee Bridge and Kara Sunderland (both University of California, San Diego) and Kimberly Lackey and Janae Carrothers (University of Idaho and Washington State University) for logistics planning, recruiting, questionnaire administration, sample collection, and taking anthropometric measurements in Washington; Romana Hyde (University of Idaho) and Kimberly Lackey (University of Idaho) for technical assistance in preparing the samples for array analysis; and Glenn Miller (Washington State University) for his expertise and critical logistic help needed for shipping samples and supplies worldwide. From Antigen Discovery, Inc., we thank Andy Teng, Chris Hung, Jozelyn Pablo, Adam Shandling and Johnathon Truong for performing lab experiments; and Angela Yee and Xioawu Liang for leadership in initiation of the breast milk immunoprofiling platform.
Sources of information: Directorio de Producción Científica Scopus