Title
An adaptive filtering approach for segmentation of tuberculosis bacteria in Ziehl-Neelsen sputum stained images
Date Issued
17 March 2016
Access level
metadata only access
Resource Type
conference paper
Author(s)
Pontifical Catholic University of Rio de Janeiro
Pontifical Catholic University of Peru
Publisher(s)
Institute of Electrical and Electronics Engineers Inc.
Abstract
Tuberculosis is a disease with one of the most leading causes of deaths in the world, however, its fatality index could be reduced if it is diagnosed and treated on time. The Ziehl-Neelsen stained sputum smear method is the most used for bacilli detection and for developing a proper diagnosis by the specialist. Nevertheless, these stained images do not always present an adequate contrast, then, the elaboration of a reliable diagnosis is a complex, time consuming and a difficult process. This research proposes an alternative method to perform automatic bacilli segmentation in Ziehl-Neelsen images using Adaptive Signal Processing techniques, like the Least Mean Squares and Reduced Rank with Eigendecomposition algorithms. The quantitative results achieved, in correlation and true positives detection, are encouraging and suggest the use of this approach as a feasible alternative, when compared with the classical segmentation techniques, for automatic bacilli segmentation in the Ziehl-Neelsen images.
Language
English
OCDE Knowledge area
Radiología, Medicina nuclear, Imágenes médicas
Subjects
Scopus EID
2-s2.0-84969631877
ISBN
9781467384186
Source
2015 Latin-America Congress on Computational Intelligence, LA-CCI 2015
Sponsor(s)
This work could not have been accomplished without the collaboration of the Medical Imaging Lab at the Pontifical Catholic University of Peru by sharing the ZN-image database. We also acknowledge the support provided by CNPq (Conselho Nacional de Desenvolvimento e Pesquisa) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).
Sources of information:
Directorio de Producción Científica
Scopus