Title
Genetic Variation in Coat Colour Genes MC1R and ASIP Provides Insights Into Domestication and Management of South American Camelids
Date Issued
2018
Access level
open access
Resource Type
journal article
Author(s)
Marin, JC
Cortes, J
Agapito, A
Chero, A
Chavez, A
Johnson, WE
Orozco-terWengel, P
Publisher(s)
Frontiers Media S.A.
Abstract
The domestication of wild vicuña and guanaco by early pre-Inca cultures is an iconic example of wildlife management and domestication in the Americas. Although domestic llamas and alpacas were clearly selected for key, yet distinct, phenotypic traits, the relative patterns and direction of selection and domestication have not been confirmed using genetic approaches. However, the detailed archaeological records from the region suggest that domestication was a process carried out under significant control and planning, which would have facilitated coordinated and thus extremely effective selective pressure to achieve and maintain desired phenotypic traits. Here we link patterns of sequence variation in two well-characterised genes coding for colour variation in vertebrates and interpret the results in the context of domestication in guanacos and vicuñas. We hypothesise that colour variation in wild populations of guanacos and vicunas were strongly selected against. In contrast, variation in coat colour variation in alpaca was strongly selected for and became rapidly fixed in alpacas. In contrast, coat colour variants in llamas were of less economic value, and thus were under less selective pressure. We report for the first time the full sequence of MC1R and 3 exons of ASIP in 171 wild specimens from throughout their distribution and which represented a range of commonly observed colour patterns. We found a significant difference in the number of non-synonymous substitutions, but not synonymous substitutions among wild and domestics species. The genetic variation in MC1R and ASIP did not differentiate alpaca from llama due to the high degree of reciprocal introgression, but the combination of 11 substitutions are sufficient to distinguish domestic from wild animals. Although there is gene flow among domestic and wild species, most of the non-synonymous variation in MC1R and ASIP was not observed in wild species, presumably because these substitutions and the associated colour phenotypes are not effectively transmitted back into wild populations. Therefore, this set of substitutions unequivocally differentiates wild from domestic animals, which will have important practical application in forensic cases involving the poaching of wild vicuñas and guanacos. These markers will also assist in identifying and studying archaeological remains pre- and post-domestication. © Copyright © 2018 MarÃn, Rivera, Varas, Cortés, Agapito, Chero, Chávez, Johnson and Orozco-terWengel.
Volume
9
Number
11
Language
English
Scopus EID
2-s2.0-85066617555
Source
Frontiers in Genetics
ISSN of the container
1664-8021
Sponsor(s)
In Chile, we thank the Servicio AgrÃcola y Ganadero, SAG, the Corporación Nacional Forestal, CONAF for granting other collection permits. We also thank Jane C. Wheeler (CONOPA, Perú), Benito González (Universidad de Chile), Cristian Bonacic (Pontificia Universidad Católica de Chile), Pablo Valdecantos (Universidad Nacional de Tucumán), Alejandra von Baer (Llamas del Sur), Luis Jacome (Zoológico de Buenos Aires, Argentina), Alberto Duarte (Zoológico de Mendoza, Argentina), and Virginia Burgi and Ricardo Baldi (CEMPAT) for sharing samples. Special thanks to Kylie Ann Munyard (Curtin University of Technology), and Michael Bruford (Cardiff University) for useful information, discussions, and support. Samples were transported under CITES authorization numbers 6282, 4222, 6007, 5971, 5177, 5178, 23355, 22967, and 22920. Funding. This research was supported by FONDECYT, Chile Grant 1140785, Postdoctoral Grant 3050046 and CONICYT Chile (Beca de Apoyo a Tesis Doctoral), Morris Animal Foundation (D05LA-002), Darwin Initiative for the Survival of Species (United Kingdom) 1312 grant 162/06/126, The British Embassy (Lima), NERC 1313 (United Kingdom) grant GST/02/828, and Newton Fund Researcher Links Travel grant (ID: RLTG9-LATAM-359537872) funded by the UK Department for Business, Energy and Industrial Strategy and CONCYTEC (Peru) and delivered by the British Council.
Sources of information:
Directorio de Producción CientÃfica