Title
Impact of projected SST changes on summer rainfall in southeastern South America
Date Issued
01 April 2013
Access level
open access
Resource Type
journal article
Author(s)
Institut Pierre Simon Laplace
Publisher(s)
Springer Verlag
Abstract
Recent studies have shown that global warming and associated sea-surface temperature (SST) changes may trigger an important rainfall increase in southeastern South America (SESA) during the austral summer (December-January-February, DJF). The goal of this paper is to provide some insight into processes which may link global and SESA changes. For this purpose, a "two-way nesting" system coupling interactively the regional and global versions of the LMDZ4 atmospheric model is used to study the response to prescribed SST changes. The regional model is a variable-grid version of the global model, with a zoom focused over South America. An ensemble of simulations forced by distinct patterns of DJF SST changes has been carried out using a decomposition of full SST changes into their longitudinal and latitudinal components. The full SST changes are based on projections for the end of the twenty-first century from a multi-model ensemble of WCRP/CMIP3. Results confirm the presence of a major rainfall dipole structure, characterized by an increase in SESA and a decrease in the South Atlantic Convergence Zone region. Rainfall changes found in the WCRP/CMIP3 models are largely explained as a response of this dipole structure to the zonally-asymmetric (or longitudinal) component of SST changes. The rainfall response to the zonal-mean (or latitudinal) SST changes (including the global warming signal itself) shows an opposite contribution. The processes explaining the role of zonally-asymmetric SST changes involve remote effects of SST warming over the equatorial Indian and Pacific oceans inducing an atmospheric wave-train extended across the South Pacific into South America. © 2013 Springer-Verlag Berlin Heidelberg.
Start page
1569
End page
1589
Volume
40
Issue
August 7
Language
English
OCDE Knowledge area
Meteorología y ciencias atmosféricas
Subjects
Scopus EID
2-s2.0-84875716155
Source
Climate Dynamics
ISSN of the container
09307575
Sponsor(s)
Comments and suggestions provided by three anonymous reviewers were very helpful in improving this paper. We acknowledge the international modeling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modeling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organizing the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, U.S. Department of Energy. This research was supported by the European Commission’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement N° 212492 (CLARIS LPB. A Europe-South America Network for Climate Change Assessment and Impact Studies in La Plata Basin), CNRS/LEFE Program, and CONICET PIP 112-200801-00399. The first author C.J. is supported by a Ph.D grant from the Ecole Polytechnique.
Sources of information:
Directorio de Producción Científica
Scopus