Title
Higher order amyloid fibril structure by MAS NMR and DNP spectroscopy
Date Issued
26 December 2013
Access level
open access
Resource Type
journal article
Author(s)
Debelouchina G.
Fitzpatrick A.
Ladizhansky V.
Colvin M.
Caporini M.
Jaroniec C.
Bajaj V.
Rosay M.
MacPhee C.
Vendruscolo M.
Maas W.
Dobson C.
Griffin R.
Massachusetts Institute of Technology
Abstract
Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the forces and interactions that confer the extraordinary stability of the amyloid architecture. Despite these advances, however, obtaining atomic resolution information describing the higher levels of structural organization within the fibrils remains a significant challenge. Here, we detail MAS NMR experiments and sample labeling schemes designed specifically to probe such higher order amyloid structure, and we have applied them to the fibrils formed by an eleven-residue segment of the amyloidogenic protein transthyretin (TTR(105-115)). These experiments have allowed us to define unambiguously not only the arrangement of the peptide β-strands into β-sheets but also the β-sheet interfaces within each protofilament, and in addition to identify the nature of the protofilament-to-protofilament contacts that lead to the formation of the complete fibril. Our efforts have resulted in 111 quantitative distance and torsion angle restraints (10 per residue) that describe the various levels of structure organization. The experiments benefited extensively from the use of dynamic nuclear polarization (DNP), which in some cases allowed us to shorten the data acquisition time from days to hours and to improve significantly the signal-to-noise ratios of the spectra. The β-sheet interface and protofilament interactions identified here revealed local variations in the structure that result in multiple peaks for the exposed N- and C-termini of the peptide and in inhomogeneous line-broadening for the residues buried within the interior of the fibrils. © 2013 American Chemical Society.
Start page
19237
End page
19247
Volume
135
Issue
51
Language
English
Scopus EID
2-s2.0-84891321196
PubMed ID
Source
Journal of the American Chemical Society
ISSN of the container
15205126
Sponsor(s)
National Institutes of Health - EB-002026, EB-003151 National Institute of Biomedical Imaging and Bioengineering - R01EB003151 - NIBIB
Sources of information: Directorio de Producción Científica Scopus