Title
Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon
Date Issued
01 December 2019
Access level
open access
Resource Type
journal article
Author(s)
Solano-Villarreal E.
Valdivia W.
Pearcy M.
Linard C.
Lejeune P.
Speybroeck N.
Hayette M.P.
University of Antwerp, Antwerp
Fonds de la Recherche Scientifique (FNRS)
Publisher(s)
Nature Publishing Group
Abstract
This is the first study to assess the risk of co-endemic Plasmodium vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted regression tree (BRT) models based on social and environmental predictors derived from satellite imagery and data. Yearly cross-validated BRT models were created to discriminate high-risk (annual parasite index API > 10 cases/1000 people) and very-high-risk for malaria (API > 50 cases/1000 people) in 2766 georeferenced villages of Loreto department, between 2010–2017 as other parts in the article (graphs, tables, and texts). Predictors were cumulative annual rainfall, forest coverage, annual forest loss, annual mean land surface temperature, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), shortest distance to rivers, time to populated villages, and population density. BRT models built with predictor data of a given year efficiently discriminated the malaria risk for that year in villages (area under the ROC curve (AUC) > 0.80), and most models also effectively predicted malaria risk in the following year. Cumulative rainfall, population density and time to populated villages were consistently the top three predictors for both P. vivax and P. falciparum incidence. Maps created using the BRT models characterize the spatial distribution of the malaria incidence in Loreto and should contribute to malaria-related decision making in the area.
Volume
9
Issue
1
Language
English
OCDE Knowledge area
Parasitología Ciencias de las plantas, Botánica
Scopus EID
2-s2.0-85074082241
PubMed ID
Source
Scientific Reports
Sponsor(s)
Este estudio fue financiado por el Consejo Nacional de Ciencias del Perú - CONCYTEC (008-2014-FONDECYT) y la Académie de Recherche et d'Enseignement Supérieur - Commission de la Coopération au Développement de Bélgica (ARES-CCD, PRD-Perú 2014–2019 ). Gracias a Nathalie Malève y Yulissa Vasquez por el apoyo general y a Bruce Millies por las correcciones en inglés.
Sources of information: Directorio de Producción Científica Scopus