Title
Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: human guided selection and gene flow
Date Issued
14 August 2012
Access level
open access
Resource Type
journal article
Publisher(s)
BioMed Central Ltd
Abstract
Background: Use of plant resources and ecosystems practiced by indigenous peoples of Mesoamerica commonly involves domestication of plant populations and landscapes. Our study analyzed interactions of coexisting wild and managed populations of the pitaya Stenocereus pruinosus, a columnar cactus used for its edible fruit occurring in natural forests, silviculturally managed in milpa agroforestry systems, and agriculturally managed in homegardens of the Tehuacán Valley, Mexico. We aimed at analyzing criteria of artificial selection and their consequences on phenotypic diversity and differentiation, as well as documenting management of propagules at landscape level and their possible contribution to gene flow among populations.Methods: Semi-structured interviews were conducted to 83 households of the region to document perception of variation, criteria of artificial selection, and patterns of moving propagules among wild and managed populations. Morphological variation of trees from nine wild, silviculturally and agriculturally managed populations was analyzed for 37 characters through univariate and multivariate statistical methods. In addition, indexes of morphological diversity (MD) per population and phenotypic differentiation (PD) among populations were calculated using character states and frequencies.Results: People recognized 15 pitaya varieties based on their pulp color, fruit size, form, flavor, and thorniness. On average, in wild populations we recorded one variety per population, in silviculturally managed populations 1.58 ± 0.77 varieties per parcel, and in agriculturally managed populations 2.19 ± 1.12 varieties per homegarden. Farmers select in favor of sweet flavor (71% of households interviewed) and pulp color (46%) mainly red, orange and yellow. Artificial selection is practiced in homegardens and 65% of people interviewed also do it in agroforestry systems. People obtain fruit and branches from different population types and move propagules from one another. Multivariate analyses showed morphological differentiation of wild and agriculturally managed populations, mainly due to differences in reproductive characters; however, the phenotypic differentiation indexes were relatively low among all populations studied. Morphological diversity of S. pruinosus (average MD = 0.600) is higher than in other columnar cacti species previously analyzed.Conclusions: Artificial selection in favor of high quality fruit promotes morphological variation and divergence because of the continual replacement of plant material propagated and introduction of propagules from other villages and regions. This process is counteracted by high gene flow influenced by natural factors (pollinators and seed dispersers) but also by human management (movement of propagules among populations), all of which determines relatively low phenotypic differentiation among populations. Conservation of genetic resources of S. pruinosus should be based on the traditional forms of germplasm management by local people. © 2012 Parra et al.; licensee BioMed Central Ltd.
Volume
8
Language
English
OCDE Knowledge area
Ecología Ciencias de las plantas, Botánica
Scopus EID
2-s2.0-84864911924
PubMed ID
Source
Journal of Ethnobiology and Ethnomedicine
ISSN of the container
17464269
Sponsor(s)
The authors thank the Posgrado en Ciencias Biológicas of the National University of Mexico (UNAM) and the National Council of Science and Technology (CONACYT), Mexico for academic and financial support for PhD studies of the first author. The Dirección General de Asuntos del Personal Académico (research project PAPIIT, UNAM IN205111-3) and National Council of Science and Technology, Mexico (research project CONACYT IB-103551) provided financial support for field and laboratory work. Edgar Pérez-Negrón gave valuable support in fieldwork; Heberto Ferreira and Alberto Valencia kindly provided assistance with computing. Finally, we want to thank to the farmers of the study zone for their enormous hospitality and disposition to collaborate with people of the villages of the study area, who kindly allowed us to work in their land and shared their knowledge.
Sources of information: Directorio de Producción Científica Scopus