Title
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
Date Issued
08 April 2022
Access level
open access
Resource Type
journal article
Author(s)
Van Lissa C.J.
Stroebe W.
vanDellen M.R.
Leander N.P.
Agostini M.
Draws T.
Grygoryshyn A.
Gützgow B.
Kreienkamp J.
Vetter C.S.
Abakoumkin G.
Abdul Khaiyom J.H.
Ahmedi V.
Akkas H.
Atta M.
Bagci S.C.
Basel S.
Kida E.B.
Bernardo A.B.I.
Buttrick N.R.
Chobthamkit P.
Choi H.S.
Cristea M.
Csaba S.
Damnjanović K.
Danyliuk I.
Dash A.
Di Santo D.
Douglas K.M.
Enea V.
Faller D.G.
Fitzsimons G.J.
Gheorghiu A.
Gómez Á.
Hamaidia A.
Han Q.
Helmy M.
Hudiyana J.
Jeronimus B.F.
Jiang D.Y.
Jovanović V.
Kamenov Ž.
Kende A.
Keng S.L.
Thanh Kieu T.T.
Koc Y.
Kovyazina K.
Kozytska I.
Krause J.
Kruglanksi A.W.
Kurapov A.
Kutlaca M.
Lantos N.A.
Lemay E.P.
Jaya Lesmana C.B.
Louis W.R.
Lueders A.
Malik N.I.
Martinez A.P.
McCabe K.O.
Mehulić J.
Milla M.N.
Mohammed I.
Molinario E.
Moyano M.
Muhammad H.
Mula S.
Muluk H.
Myroniuk S.
Najafi R.
Nisa C.F.
Nyúl B.
O'Keefe P.A.
Olivas Osuna J.J.
Osin E.N.
Park J.
Pica G.
Pierro A.
Rees J.H.
Reitsema A.M.
Resta E.
Rullo M.
Ryan M.K.
Samekin A.
Santtila P.
Sasin E.M.
Schumpe B.M.
Selim H.A.
Stanton M.V.
Sultana S.
Sutton R.M.
Tseliou E.
Utsugi A.
Anne van Breen J.
Van Veen K.
Vázquez A.
Wollast R.
Wai-Lan Yeung V.
Zand S.
Publisher(s)
Cell Press
Abstract
Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.
Volume
3
Issue
4
Language
English
OCDE Knowledge area
Epidemiología Salud pública, Salud ambiental
Scopus EID
2-s2.0-85127500709
Source
Patterns
ISSN of the container
26663899
Sponsor(s)
The lead author was funded by a NWO Veni Grant (NWO Grant Number VI.Veni.191G.090 ). This research received support from the New York University Abu Dhabi ( VCDSF/75-71015 ), the University of Groningen (Sustainable Society & Ubbo Emmius Fund), and the Instituto de Salud Carlos III ( COV20/00086 ) co-funded by the European Regional Development Fund (ERDF) “A way to make Europe.”
Sources of information: Directorio de Producción Científica Scopus