Title
Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene
Date Issued
01 February 2016
Access level
open access
Resource Type
review
Author(s)
Emile-Geay J.
Cobb K.M.
Braconnot P.
Leloup J.
Zhou Y.
Harrison S.P.
Corrège T.
McGregor H.V.
Collins M.
Driscoll R.
Elliot M.
Schneider B.
Tudhope A.
Publisher(s)
Nature Publishing Group
Abstract
The El Ninõ/Southern Oscillation (ENSO) is the leading mode of interannual climate variability. However, it is unclear how ENSO has responded to external forcing, particularly orbitally induced changes in the amplitude of the seasonal cycle during the Holocene. Here we present a reconstruction of seasonal and interannual surface conditions in the tropical Pacific Ocean from a network of high-resolution coral and mollusc records that span discrete intervals of the Holocene. We identify several intervals of reduced variance in the 2 to 7 yr ENSO band that are not in phase with orbital changes in equatorial insolation, with a notable 64% reduction between 5,000 and 3,000 years ago. We compare the reconstructed ENSO variance and seasonal cycle with that simulated by nine climate models that include orbital forcing, and find that the models do not capture the timing or amplitude of ENSO variability, nor the mid-Holocene increase in seasonality seen in the observations; moreover, a simulated inverse relationship between the amplitude of the seasonal cycle and ENSO-related variance in sea surface temperatures is not found in our reconstructions.We conclude that the tropical Pacific climate is highly variable and subject to millennial scale quiescent periods. These periods harbour no simple link to orbital forcing, and are not adequately simulated by the current generation of models.
Start page
168
End page
173
Volume
9
Issue
2
Language
English
OCDE Knowledge area
Investigación climática
Subjects
DOI
Scopus EID
2-s2.0-84957092720
Source
Nature Geoscience
ISSN of the container
17520894
Sponsor(s)
We acknowledge theWorld Climate Research Program''sWorking Group on Coupled Modelling, which is responsible for CMIP, and we thank the PMIP3 modelling groups for producing and making available their model output. The US Department of Energy''s Program for Climate Model Diagnosis and Intercomparison provides coordinating support for CMIP, and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. J.E.-G. acknowledges support from US NSF grant DMS 1025465. K.M.C. acknowledges support from NOAA award NA11OAR4310166 and NSF award OCE-0752091. M.Collins acknowledges support from UK NERC grant NE/H009957/1. H.V.M. and A.T. acknowledge support from Australian Research Council (ARC) Discovery Project grant DP1092945. H.V.M. is supported by an ARC Future Fellowship FT140100286 grant. A.T. acknowledges support from UK NERC grant NE/H009957/1. T.C. thanks M. McCulloch (formerly at ANU) for dating the Bayes coral, and M. Gagan''s team at ANU for help with isotopic measurements. The Bayes 1 core was collected with funds from the Institut de Recherche pour le Développement. B.S. was supported by the DFG Cluster of Excellence `The Future Ocean'' (EXC 80/2). P.B., M.Carré, T.C., J.L., M.E. and A.T. were supported by the French National Research Agency under EL PASO grant (no. 2010 298 BLANC 608 01). This project also serves for coordination and implementation of the PMIP3/CMIP5 simulations on the ESGF distributed database.We thank J.-Y. Peterschmitt for his help with the PMIP database. This work was initiated in a workshop co-sponsored by WCRP/CLIVAR, IGBP/PAGES, INQUA and IPSL in 2011.
Sources of information:
Directorio de Producción Científica
Scopus