Title
Near-Infrared Optical Response and Carrier Dynamics for High Photoconversion in Tellurene
Date Issued
14 April 2022
Access level
metadata only access
Resource Type
journal article
Author(s)
Publisher(s)
American Chemical Society
Abstract
Materials for applications in solar cells require a combination of features including an appropriate band gap and long relaxation times for photoexcited hot carriers. On the basis of ab initio many-body perturbation theory, including the spin-orbit interaction, we investigate the photocarrier generation and dynamics in α-tellurene. We show that photoexcited electrons are mainly generated in the near-infrared range, starting at 0.89 eV and forming excitons that are strongly bound, compared to its bulk counterpart, with a binding energy of 0.31 eV. We also explore the role of the electron-phonon interaction, finding that the electronic states in the first conduction band minimum couples weakly with phonons, yielding longer hot electron lifetimes (up to 70 fs) and mean free paths up to 37 nm. We also show that the extraction of hot holes may result in a challenging task as these carriers possess sub-3 nm mean free paths. We finally estimate that 1-nm-thick α-Te provides a short-circuit current density of 6.7 mA/cm2and a maximum power conversion efficiency of 4.4%, which highlights its potential for efficient photovoltaic device development.
Start page
6129
End page
6134
Volume
126
Issue
14
Language
English
OCDE Knowledge area
Óptica
Química física
Scopus EID
2-s2.0-85128517605
Source
Journal of Physical Chemistry C
ISSN of the container
19327447
Sponsor(s)
C.E.P.V. acknowledges the financial support from Universidad Nacional Mayor de San Marcos-RR N 005753-2021, Project No. B21130941. A.R.R. acknowledges support from FAPESP (Project Nos. 2016/01343-7 and 2017/02317-2). This work uses the computational resources from GRID-UNESP.
Sources of information:
Directorio de Producción Científica
Scopus